The augment() function returns the data used in the model

# S3 method for hts_inla
augment(x, newdata = NULL, exponentiate = FALSE, ...)

Arguments

x

object of class "hts_inla"

newdata

new data to pass to prediction? Default is NULL

exponentiate

default FALSE. Whether to exponentiate predictions

...

extra arguments to pass to augment(). Currently unused.

Value

dataframe with column names of original data, as well as extra columns, ".fitted" and ".resid".

Examples

hts_example_model
#> <hts_inla> model (fit in 26.49s)
#> Formula:
#> • ~
#> • pr
#> • avg_lower_age + hts(who_subregion, country)
#> 
augment(hts_example_model)
#> # A tsibble: 1,046 x 19 [1D]
#> # Key:       country [46]
#>    who_region who_subregion country date       month_num positive examined
#>    <fct>      <fct>         <fct>   <date>         <dbl>    <dbl>    <int>
#>  1 AFRO       AFRO-W        Angola  1989-06-01       120     15.8       50
#>  2 AFRO       AFRO-W        Angola  2005-11-01       372     82        111
#>  3 AFRO       AFRO-W        Angola  2006-04-01       300    102        197
#>  4 AFRO       AFRO-W        Angola  2006-11-01       384     41        347
#>  5 AFRO       AFRO-W        Angola  2006-12-01       396    173        734
#>  6 AFRO       AFRO-W        Angola  2007-01-01       276    216        828
#>  7 AFRO       AFRO-W        Angola  2007-02-01       288     42         71
#>  8 AFRO       AFRO-W        Angola  2007-03-01       300    119        448
#>  9 AFRO       AFRO-W        Angola  2011-01-01       324      1        239
#> 10 AFRO       AFRO-W        Angola  2011-02-01       336    148       1132
#> # … with 1,036 more rows, and 12 more variables: pr <dbl>, avg_lower_age <dbl>,
#> #   continent_id <fct>, country_id <fct>, year <int>, month <int>,
#> #   avg_upper_age <dbl>, species <fct>, .who_subregion_id <int>,
#> #   .country_id <int>, .fitted <dbl>, .resid <dbl>