The augment()
function returns the data used in the model
# S3 method for hts_inla
augment(x, newdata = NULL, exponentiate = FALSE, ...)
object of class "hts_inla"
new data to pass to prediction? Default is NULL
default FALSE. Whether to exponentiate predictions
extra arguments to pass to augment()
. Currently unused.
dataframe with column names of original data, as well as extra columns, ".fitted" and ".resid".
hts_example_model
#> <hts_inla> model (fit in 26.49s)
#> Formula:
#> • ~
#> • pr
#> • avg_lower_age + hts(who_subregion, country)
#>
augment(hts_example_model)
#> # A tsibble: 1,046 x 19 [1D]
#> # Key: country [46]
#> who_region who_subregion country date month_num positive examined
#> <fct> <fct> <fct> <date> <dbl> <dbl> <int>
#> 1 AFRO AFRO-W Angola 1989-06-01 120 15.8 50
#> 2 AFRO AFRO-W Angola 2005-11-01 372 82 111
#> 3 AFRO AFRO-W Angola 2006-04-01 300 102 197
#> 4 AFRO AFRO-W Angola 2006-11-01 384 41 347
#> 5 AFRO AFRO-W Angola 2006-12-01 396 173 734
#> 6 AFRO AFRO-W Angola 2007-01-01 276 216 828
#> 7 AFRO AFRO-W Angola 2007-02-01 288 42 71
#> 8 AFRO AFRO-W Angola 2007-03-01 300 119 448
#> 9 AFRO AFRO-W Angola 2011-01-01 324 1 239
#> 10 AFRO AFRO-W Angola 2011-02-01 336 148 1132
#> # … with 1,036 more rows, and 12 more variables: pr <dbl>, avg_lower_age <dbl>,
#> # continent_id <fct>, country_id <fct>, year <int>, month <int>,
#> # avg_upper_age <dbl>, species <fct>, .who_subregion_id <int>,
#> # .country_id <int>, .fitted <dbl>, .resid <dbl>